
Django App Engine Documentation
Release 1.6.0

AllButtonsPressed, Potato London, Wilfred Hughes

Jul 14, 2017

Contents

1 Contents 3
1.1 Installation . 3
1.2 Fields, queries and indexes . 4
1.3 Email, caching and other services . 7
1.4 Running djangoappengine . 8
1.5 Django admin . 9
1.6 MapReduce . 11

2 Contribute 13

i

ii

Django App Engine Documentation, Release 1.6.0

Djangoappengine contains App Engine backends for Django-nonrel, e.g. the database and email backends. In addition
we provide a testapp which contains minimal settings for running Django-nonrel on App Engine. Use it as a starting
point if you want to use App Engine as your database for Django-nonrel.

Take a look at the documentation below and subscribe to our discussion group for the latest updates.

Contents 1

https://github.com/django-nonrel/django-testapp
http://groups.google.com/group/django-non-relational

Django App Engine Documentation, Release 1.6.0

2 Contents

CHAPTER 1

Contents

Installation

Make sure you’ve installed the App Engine SDK. On Windows simply use the default installation path. On Linux you
can put it in /usr/local/google_appengine. On MacOS it should work if you put it in your Applications
folder. Alternatively, on all systems you can add the google_appengine folder to your PATH (not PYTHONPATH)
environment variable.

Note: Since Google App Engine runs your Python code from within a sandbox, some standard Python installation
methods are unavailable. For example, you cannot install django or other Python modules in your system’s Python
library. All code for your app must be installed in your project directory.

Create a new directory for your project.

Download the following zip files:

• django-nonrel

• djangoappengine

• djangotoolbox

• django-autoload

• django-dbindexer

Unzip everything and copy the modules into your project directory.

Now you need to create a django project. Djangoappengine includes a project template which you can generate using
the django-admin.py command. Run this command from within your project directory to create a new project:

PYTHONPATH=. python django/bin/django-admin.py startproject \
--name=app.yaml --template=djangoappengine/conf/project_template myapp .

That’s it. Your project structure should look like this:

3

https://developers.google.com/appengine/downloads
https://github.com/django-nonrel/django/zipball/nonrel-1.5
https://github.com/django-nonrel/djangoappengine/zipball/master
https://github.com/django-nonrel/djangotoolbox/zipball/master
http://bitbucket.org/twanschik/django-autoload/get/tip.zip
https://github.com/django-nonrel/django-dbindexer/zipball/master

Django App Engine Documentation, Release 1.6.0

• <project>/autoload

• <project>/dbindexer

• <project>/django

• <project>/djangoappengine

• <project>/djangotoolbox

To start the local dev server, run this command:

./manage.py runserver

Note: You can also clone the Git repositories and copy the modules from there into your project. The repositories are
available here: django-nonrel, djangoappengine, djangotoolbox, django-autoload, django-dbindexer. Alternatively,
you can of course clone the respective repositories and create symbolic links instead of copying the folders to your
project. That might be easier if you have a lot of projects and don’t want to update each one manually.

Fields, queries and indexes

Supported and unsupported features

Field types

All Django field types are fully supported except for the following:

• ImageField

• ManyToManyField

The following Django field options have no effect on App Engine:

• unique

• unique_for_date

• unique_for_month

• unique_for_year

Additionally djangotoolbox provides non-Django field types in djangotoolbox.fields which you can use on
App Engine or other non-relational databases. These are

• ListField

• BlobField

The following App Engine properties can be emulated by using a CharField in Django-nonrel:

• CategoryProperty

• LinkProperty

• EmailProperty

• IMProperty

• PhoneNumberProperty

• PostalAddressProperty

4 Chapter 1. Contents

https://github.com/django-nonrel/django
https://github.com/django-nonrel/djangoappengine
https://github.com/django-nonrel/djangotoolbox
https://bitbucket.org/twanschik/django-autoload
https://github.com/django-nonrel/django-dbindexer
https://github.com/django-nonrel/djangotoolbox

Django App Engine Documentation, Release 1.6.0

QuerySet methods

You can use the following field lookup types on all Fields except on TextField (unless you use indexes) and
BlobField

• __exact equal to (the default)

• __lt less than

• __lte less than or equal to

• __gt greater than

• __gte greater than or equal to

• __in (up to 500 values on primary keys and 30 on other fields)

• __range inclusive on both boundaries

• __startswith needs a composite index if combined with other filters

• __year

• __isnull requires django-dbindexer to work correctly on ForeignKey (you don’t have to define any in-
dexes for this to work)

Using django-dbindexer all remaining lookup types will automatically work too!

Additionally, you can use

• QuerySet.exclude()

• Queryset.values() (only efficient on primary keys)

• Q-objects

• QuerySet.count()

• QuerySet.reverse()

• ...

In all cases you have to keep general App Engine restrictions in mind.

Model inheritance only works with abstract base classes:

class MyModel(models.Model):
... fields ...
class Meta:

abstract = True # important!

class ChildModel(MyModel):
works

In contrast, multi-table inheritance (i.e. inheritance from non-abstract models) will result in query errors. That’s be-
cause multi-table inheritance, as the name implies, creates separate tables for each model in the inheritance hierarchy,
so it requires JOINs to merge the results. This is not the same as multiple inheritance which is supported as long as
you use abstract parent models.

Many advanced Django features are not supported at the moment. A few of them are:

• JOINs (with django-dbindexer simple JOINs will work)

• many-to-many relations

• aggregates

1.2. Fields, queries and indexes 5

https://github.com/django-nonrel/django-dbindexer
https://github.com/django-nonrel/django-dbindexer
http://docs.djangoproject.com/en/dev/topics/db/models/#abstract-base-classes
http://docs.djangoproject.com/en/dev/topics/db/models/#multi-table-inheritance
http://docs.djangoproject.com/en/dev/topics/db/models/#multiple-inheritance

Django App Engine Documentation, Release 1.6.0

• transactions (but you can use run_in_transaction() from App Engine’s SDK)

• QuerySet.select_related()

Other

Additionally, the following features from App Engine are not supported:

• entity groups (we don’t yet have a GAEPKField, but it should be trivial to add)

• batch puts (it’s technically possible, but nobody found the time/need to implement it, yet)

Indexes

It’s possible to specify which fields should be indexed and which not. This also includes the possibility to convert a
TextField into an indexed field like CharField.

Managing per-field indexes

An annoying problem when trying to reuse an existing Django app is that some apps use TextField instead of
CharField and still want to filter on that field. On App Engine TextField is not indexed and thus can’t be filtered
against. One app which has this problem is django-openid-auth. Previously, you had to modify the model source code
directly and replace TextField with CharField where necessary. However, this is not a good solution because
whenever you update the code you have to apply the patch, again. Now, djangoappengine provides a solution which
allows you to configure indexes for individual fields without changing the models. By decoupling DB-specific indexes
from the model definition we simplify maintenance and increase code portability.

Example

Let’s see how we can get django-openid-auth to work correctly without modifying the app’s source code. First, you
need to create a module which defines the indexing settings. Let’s call it “gae_openid_settings.py”:

from django_openid_auth.models import Association, UserOpenID

FIELD_INDEXES = {
Association: {'indexed': ['server_url', 'assoc_type']},
UserOpenID: {'indexed': ['claimed_id']},

}

Then, in your settings.py you have to specify the list of gae settings modules:

GAE_SETTINGS_MODULES = (
'gae_openid_settings',

)

That’s it. Now the server_url, assoc_type, and claimed_id TextFields will behave like CharField
and get indexed by the datastore.

Note that we didn’t place the index definition in the django_openid_auth package. It’s better to keep them
separate because that way upgrades are easier: Just update the django_openid_auth folder. No need to re-add
the index definition (and you can’t mistakenly delete the index definition during updates).

6 Chapter 1. Contents

https://launchpad.net/django-openid-auth
https://github.com/django-nonrel/djangoappengine

Django App Engine Documentation, Release 1.6.0

Optimization

You can also use this to optimize your models. For example, you might have fields which don’t need to be indexed.
The more indexes you have the slower Model.save() will be. Fields that shouldn’t be indexed can be specified via
'unindexed':

from myapp.models import MyContact

FIELD_INDEXES = {
MyContact: {

'indexed': [...],
'unindexed': ['creation_date', 'last_modified', ...],

},
}

This also has a nice extra advantage: If you specify a CharField as “unindexed” it will behave like a TextField
and allow for storing strings that are longer than 500 bytes. This can also be useful when trying to integrate 3rd-party
apps.

dbindexer index definitions

By default, djangoappengine installs __iexact indexes on User.username and User.email.

High-replication datastore settings

In order to use manage.py remote with the high-replication datastore you need to add the following to the top of
your settings.py:

from djangoappengine.settings_base import *
DATABASES['default']['HIGH_REPLICATION'] = True

Email, caching and other services

Email handling

You can (and should) use Django’s mail API instead of App Engine’s mail API. The App Engine email backend is
already enabled in the default settings (from djangoappengine.settings_base import *).

Emails will be deferred to the task queue specified in the EMAIL_QUEUE_NAME setting. If you run the dev
appserver with –disable_task_running then you’ll see the tasks being deposited in the queue. You can manually
execute those tasks from the GUI at /_ah/admin/tasks.

If you execute the dev appserver with the options --smtp_host=localhost --smtp_port=1025 and run
the dev smtp server in a terminal with python -m smtpd -n -c DebuggingServer localhost:1025
then you’ll see emails delivered to that terminal for debug.

Cache API

You can (and should) use Django’s cache API instead of App Engine’s memcache module. The memcache backend is
already enabled in the default settings.

1.3. Email, caching and other services 7

Django App Engine Documentation, Release 1.6.0

Sessions

You can use Django’s session API in your code. The cached_db session backend is already enabled in the default
settings.

Authentication

You can (and probably should) use django.contrib.auth directly in your code. We don’t recommend to use
App Engine’s Google Accounts API. This will lock you into App Engine unnecessarily. Use Django’s auth API,
instead. If you want to support Google Accounts you can do so via OpenID. Django has several apps which provide
OpenID support via Django’s auth API. This also allows you to support Yahoo and other login options in the future and
you’re independent of App Engine. Take a look at Google OpenID Sample Store to see an example of what OpenID
login for Google Accounts looks like.

Note that username uniqueness is only checked at the form level (and by Django’s model validation API if you ex-
plicitly use that). Since App Engine doesn’t support uniqueness constraints at the DB level it’s possible, though very
unlikely, that two users register the same username at exactly the same time. Your registration confirmation/activation
mechanism (i.e., user receives mail to activate his account) must handle such cases correctly. For example, the ac-
tivation model could store the username as its primary key, so you can be sure that only one of the created users is
activated.

The django-permission-backend-nonrel repository contains fixes for Django’s auth to make permissions and groups
work on GAE (including the auth admin screens).

File uploads/downloads

See django-filetransfers for an abstract file upload/download API for FileField which works with the Blobstore
and X-Sendfile and other solutions. The required backends for the App Engine Blobstore are already enabled in the
default settings.

Background tasks

Contributors: We’ve started an experimental API for abstracting background tasks, so the same code can work with
App Engine and Celery and others. Please help us finish and improve the API here: https://bitbucket.org/wkornewald/
django-defer

Make sure that your app.yaml specifies the correct deferred handler. It should be:

- url: /_ah/queue/deferred
script: djangoappengine/deferred/handler.py
login: admin

This custom handler initializes djangoappengine before it passes the request to App Engine’s internal deferred
handler.

Running djangoappengine

Management commands

You can directly use Django’s manage.py commands. For example, run manage.py createsuperuser to create
a new admin user and manage.py runserver to start the development server.

8 Chapter 1. Contents

https://sites.google.com/site/oauthgoog/Home/openidsamplesite
http://www.allbuttonspressed.com/projects/django-filetransfers
https://developers.google.com/appengine/docs/python/blobstore/overview
https://bitbucket.org/wkornewald/django-defer
https://bitbucket.org/wkornewald/django-defer

Django App Engine Documentation, Release 1.6.0

Important: Don’t use dev_appserver.py directly. This won’t work as expected because manage.py runserver
uses a customized dev_appserver.py configuration. Also, never run manage.py runserver together with other
management commands at the same time. The changes won’t take effect. That’s an App Engine SDK limitation which
might get fixed in a later release.

With djangoappengine you get a few extra manage.py commands:

• manage.py remote allows you to execute a command on the production database (e.g., manage.py
remote shell or manage.py remote createsuperuser)

• manage.py deploy uploads your project to App Engine (use this instead of appcfg.py update)

Note that you can only use manage.py remote if your app is deployed and if you have enabled authentication via
the Google Accounts API in your app settings in the App Engine Dashboard. Also, if you use a custom app.yaml you
have to make sure that it contains the remote_api handler. Running ‘remote’ executes your local code, but proxies
your datastore access against the remote datastore.

App Engine for Business

In order to use manage.py remote with the googleplex.com domain you need to add the following to the top
of your settings.py:

from djangoappengine.settings_base import *
DATABASES['default']['DOMAIN'] = 'googleplex.com'

Checking whether you’re on the production server

from djangoappengine.utils import on_production_server, have_appserver

When you’re running on the production server on_production_server is True. When you’re running either
the development or production server have_appserver is True and for any other manage.py command it’s
False.

Zip packages

Important: Your instances will load slower when using zip packages because zipped Python files are not precompiled.
Also, i18n doesn’t work with zip packages. Zipping should only be a last resort! If you hit the 3000 files limit you
should better try to reduce the number of files by, e.g., deleting unused packages from Django’s “contrib” folder. Only
when nothing (!) else works you should consider zip packages.

Since you can’t upload more than 10000 files on App Engine you sometimes have to create zipped packages. Luckily,
djangoappengine can help you with integrating those zip packages. Simply create a “zip-packages” directory in your
project folder and move your zip packages there. They’ll automatically get added to sys.path.

In order to create a zip package simply select a Python package (e.g., a Django app) and zip it. However, keep in
mind that only Python modules can be loaded transparently from such a zip file. You can’t easily access templates
and JavaScript files from a zip package, for example. In order to be able to access the templates you should move the
templates into your global “templates” folder within your project before zipping the Python package.

Django admin

The native django admin site is a compelling reason to use django nonrel on the appengine, rather than webapp2 with
native GAE datastore bindings.

1.5. Django admin 9

Django App Engine Documentation, Release 1.6.0

However, there are limitations to be aware of when running contrib.admin against the GAE datastore instead of a rich
SQL database:

• inequality queries against one index only

• need to use dbindexer to access ‘contains’

• need to use dbindexer to index date/datetime fields used for date filters

Some of the consequences of the above restrictions:

• can’t find users created before 2012 sorted by name

• can’t find users like “Peter” sorted by date joined

• can’t sort by multiple columns

For end-users this does lead to a limited admin site compared with ‘relational’ django. You may find that alterna-
tive/custom screens need to be implemented to meet all users’ requirements on GAE (if they can be satisfied at all).

indexes.yaml

Beware of adding all the suggested composite indexes to your indexes.yaml when you use the admin site. It’s easy
to rack up the maximum 200 indexes and find that you struggle to add new functionality that needs further indexes.
Instead, digest the Google index documentation and aim to exploit the zigzag merge query planner to reduce the
number of indexes needed. This is particularly useful when you want to use several admin filters.

Sorting and searching

You may have an admin screen for some model sorted by ‘name’. But users may also want to be able to search
for an article, which depends on an inequality query against a dbindexer icontains index (a model’s generated
‘idxf_name_l_icontains’ field). Since the datastore can’t query against two inequality relations, you can’t simply
have this in your admin definition:

search_fields = ('name',)
ordering = ('name',)

This fails when you use the search, because that query is an inequality against dbindexer’s generated
‘idxf_name_l_icontains’ field, which the datastore can’t handle at the same time as sorting (inequality) against the
‘name’ field.

A useful pattern to get round this is to make your admin screen’s ordering vary depending on whether a search is in
action or not:

search_fields = ('name',)
def get_ordering(self, request):

if 'q' in request.GET and request.GET['q'] != '':
return ('idxf_name_l_icontains',)

return ('name',)

In other words, don’t specify the admin ‘ordering’ variable, but defer to the ‘get_ordering’ method, which sorts by
name if no search is in action, or by the dbindexer field if it is.

Filters and sorting and searching

Date/datetime filters do work if you define some indexes using dbindexer, but you can’t apply a date filter (which uses
an inequality query for some of the options) at the same time as a search. And the sort order for a filtered model must

10 Chapter 1. Contents

https://developers.google.com/appengine/articles/indexselection

Django App Engine Documentation, Release 1.6.0

match the filter. For example:

list_filter = ('expired', OwnedFranchiseRegionFilter, 'status', 'start_date',)
ordering = ('-start_date',)

where ‘start_date’ is a Datefield and the other filters are simple equality filters. In this case, the admin screen cannot
be ordered by name, and we can’t enable search by name.

MapReduce

Overview

Djangoappengine provides a few classes and utilities to make working with Google App Engine’s MapReduce library
easier. There are many tutorials and documents on MapReduce in general, as well as on the specifics of App Engine’s
MapReduce library.

• MapReduce Wikipedia page

• Original Google MapReduce paper

• App Engine MapReduce library

• Getting started guide for Python MapReduce

Djangoappengine provides two modules to simplify running MapReduce jobs over Django models. DjangoMod-
elMapreduce and DjangoModelMap are helper functions that quickly allow you to create a mapreduce or a simple
map job. These functions make use of DjangoModelInputReader, an InputReader subclass, which returns model
instances for a given Django model.

Installation

Checkout the mapreduce folder into your application directory:

svn checkout http://appengine-mapreduce.googlecode.com/svn/trunk/python/src/mapreduce

Add the mapreduce handlers to your app.yaml:

handlers:
- url: /mapreduce/pipeline/images

static_dir: mapreduce/lib/pipeline/ui/images

- url: /mapreduce(/.*)?
script: djangoappengine.mapreduce.handler.application
login: admin

DjangoModelMapreduce and DjangoModelMap

DjangoModelMapreduce and DjangoModelMap are helper functions which return MapreducePipeline and Mapper-
Pipeline instances, respectively.

DjangoModelMap allows you to specify a model class and a single function called a mapper. The mapper function
can do anything to your model instance, including When running the pipeline, the mapper function is called on each
instance of your model class. As an example, consider this simple model:

1.6. MapReduce 11

http://en.wikipedia.org/wiki/MapReduce
http://research.google.com/archive/mapreduce.html
http://code.google.com/p/appengine-mapreduce/
http://code.google.com/p/appengine-mapreduce/wiki/GettingStartedInPython

Django App Engine Documentation, Release 1.6.0

class User(models.Model):
name = models.CharField()
city = models.CharField()
age = models.IntegerField()

A mapper class which output the name and age of each User in a tab-delimited format looks like this:

from djangoappengine.mapreduce import pipeline as django_pipeline
from mapreduce import base_handler

def name_age(user):
yield "%s\t%s\n" % (user.name, user.age)

class UserNameAgePipeline(base_handler.PipelineBase):
def run(self):

yield django_pipeline.DjangoModelMap(User, name_age)

A mapreduce class which outputs the average age of the users in each city looks like this:

from djangoappengine.mapreduce import pipeline as django_pipeline
from mapreduce import base_handler

def avg_age_mapper(user):
yield (user.city, user.age)

def avg_age_reducer(city, age_list):
yield "%s\t%s\n" % (city, float(sum(age_list))/len(age_list))

class AverageAgePipeline(base_handler.PipelineBase):
def run(self):

yield django_pipeline.DjangoModelMapreduce(User, avg_age_mapper, avg_age_
→˓reducer)

12 Chapter 1. Contents

CHAPTER 2

Contribute

If you want to help with implementing a missing feature or improving something please fork the source and send a
pull request via Github or a patch to the discussion group.

13

https://github.com/django-nonrel/djangoappengine
http://groups.google.com/group/django-non-relational

	Contents
	Installation
	Fields, queries and indexes
	Email, caching and other services
	Running djangoappengine
	Django admin
	MapReduce

	Contribute

